Bạn Tìm Gì Hôm Nay ...?
Tất cả đều có chỉ trong 1 nốt nhạc !
Nếu cần hỗ trợ chi tiết gọi 1900 9477
Các mô hình ngôn ngữ lớn (LLM) là các mô hình học sâu rất lớn, được đào tạo trước dựa trên một lượng dữ liệu khổng lồ. Bộ chuyển hóa cơ bản là tập hợp các mạng nơ-ron có một bộ mã hóa và một bộ giải mã với khả năng tự tập trung. Bộ mã hóa và bộ giải mã trích xuất ý nghĩa từ một chuỗi văn bản và hiểu mối quan hệ giữa các từ và cụm từ trong đó. Bộ chuyển hóa LLM có khả năng đào tạo không có giám sát, mặc dù lời giải thích chính xác hơn là bộ chuyển hóa thực hiện việc tự học. Thông qua quá trình này, bộ chuyển hóa học cách hiểu ngữ pháp, ngôn ngữ và kiến thức cơ bản.
Khác với các mạng nơ-ron hồi quy (RNN) trước đó thường xử lý tuần tự dữ liệu đầu vào, bộ chuyển hóa xử lý song song toàn bộ trình tự. Điều này cho phép các nhà khoa học dữ liệu sử dụng GPU để đào tạo các LLM dựa trên bộ chuyển hóa, qua đó giảm đáng kể thời gian đào tạo. Kiến trúc mạng nơ-ron của bộ chuyển hóa cho phép việc sử dụng các mô hình rất lớn, thường có hàng trăm tỷ tham số. Các mô hình quy mô lớn như vậy có thể thu nạp một lượng dữ liệu khổng lồ, thường là từ Internet, nhưng cũng từ các nguồn, ví dụ như Common Crawl với hơn 50 tỷ trang web, và Wikipedia với khoảng 57 triệu trang.
Các mô hình ngôn ngữ lớn vô cùng linh hoạt. Một mô hình có thể thực hiện các tác vụ hoàn toàn khác nhau, ví dụ như trả lời câu hỏi, tóm tắt tài liệu, dịch ngôn ngữ và hoàn thành câu. LLM có khả năng làm gián đoạn việc sáng tạo nội dung và cách thức mọi người sử dụng công cụ tìm kiếm và trợ lý ảo.
Mặc dù không hoàn hảo, nhưng LLM đang thể hiện khả năng đáng kinh ngạc của mình trong việc đưa ra các dự đoán dựa trên một số lượng lời nhắc hoặc dữ liệu đầu vào tương đối nhỏ. LLM có thể được sử dụng cho AI (trí tuệ nhân tạo) tạo sinh để tạo ra nội dung dựa trên lời nhắc được nhập vào bằng ngôn ngữ của con người.
Một yếu tố quan trọng trong cách thức hoạt động của LLM là cách chúng biểu diễn các từ. Các hình thức máy học trước đây sử dụng một bảng số để biểu diễn từng từ. Tuy nhiên, hình thức biểu diễn này không thể nhận ra mối quan hệ giữa các từ, chẳng hạn như các từ có nghĩa tương tự. Hạn chế này đã được khắc phục bằng cách sử dụng các véc-tơ đa chiều, thường được gọi là nhúng từ, để biểu diễn các từ sao cho các từ có nghĩa theo ngữ cảnh tương tự nhau hoặc các mối quan hệ khác sẽ gần nhau trong không gian véc-tơ.
Bằng cách sử dụng nhúng từ, bộ chuyển hóa có thể xử lý trước văn bản dưới dạng phần biểu diễn bằng số thông qua bộ mã hóa và hiểu ngữ cảnh của các từ lẫn cụm từ có nghĩa tương tự, cũng như các mối quan hệ khác giữa các từ, chẳng hạn như các phần của lời nói. Sau đó, LLM có thể áp dụng kiến thức về ngôn ngữ này thông qua bộ giải mã để tạo ra một kết quả đầu ra độc đáo.
LLM có rất nhiều ứng dụng thực tế như:
Ngoài GPT-3 và ChatGPT, Claude, Llama 2, Cohere Command và Jurassic cũng có thể viết quảng cáo gốc. AI21 Wordspice đề xuất những thay đổi đối với câu gốc để cải thiện văn phong và giọng điệu.
Thường được gọi là xử lý ngôn ngữ tự nhiên chuyên sâu về kiến thức (KI-NLP), kỹ thuật này đề cập đến các LLM có khả năng trả lời những câu hỏi cụ thể dựa trên thông tin được lưu trữ trong kho lưu trữ kỹ thuật số. Một ví dụ là khả năng trả lời câu hỏi về kiến thức tổng quát của sân chơi AI21 Studio.
LLM có thể phân loại văn bản có ý nghĩa hoặc quan điểm tương tự nhau bằng cách sử dụng cụm. Các trường hợp sử dụng bao gồm đo lường quan điểm khách hàng, xác định mối quan hệ giữa các văn bản và tìm kiếm tài liệu.
LLM thành thạo trong việc tạo mã từ lời nhắc ngôn ngữ tự nhiên. Ví dụ: Amazon CodeWhisperer và codex của Open AI được sử dụng trong GitHub Copilot có thể viết mã bằng Python, JavaScript, Ruby và một số ngôn ngữ lập trình khác. Các ứng dụng viết mã khác bao gồm tạo truy vấn SQL, viết lệnh shell và thiết kế trang web.
Tương tự như tạo mã, tạo văn bản có thể hoàn tất các câu không hoàn chỉnh, viết tài liệu về sản phẩm hoặc, như Alexa Create, viết một câu chuyện ngắn dành cho trẻ em.
Mạng nơ-ron dựa trên bộ chuyển hóa rất lớn. Các mạng này chứa nhiều nút và lớp. Mỗi nút trong một lớp có kết nối với tất cả các nút trong lớp tiếp theo, mỗi nút có trọng số và độ lệch. Trọng số và độ lệch cùng với phần nhúng được gọi là tham số mô hình. Mạng nơ-ron dựa trên bộ chuyển hóa lớn có thể có hàng tỷ tham số. Kích thước của mô hình thường được xác định bởi mối quan hệ thực nghiệm giữa kích thước mô hình, số lượng tham số và kích thước của dữ liệu đào tạo.
Quá trình đào tạo được thực hiện bằng cách sử dụng một tập ngữ liệu lớn gồm dữ liệu chất lượng cao. Trong quá trình đào tạo, mô hình điều chỉnh liên tục các giá trị tham số cho đến khi mô hình dự đoán chính xác mã thông báo tiếp theo từ trình tự mã thông báo đầu vào trước đó. Mô hình thực hiện điều này thông qua các kỹ thuật tự học, giúp mô hình học được cách điều chỉnh các tham số để tối đa hóa khả năng của các mã thông báo tiếp theo trong các mẫu đào tạo.
Sau khi được đào tạo, LLM có thể dễ dàng được điều chỉnh để thực hiện nhiều tác vụ bằng cách sử dụng các tập dữ liệu có giám sát tương đối nhỏ, một quy trình được gọi là tinh chỉnh.
Có ba mô hình học phổ biến:
Tương lai của Mô hình Ngôn ngữ Lớn (LLM) đang hứa hẹn với nhiều tiềm năng và thách thức. Dưới đây là một số xu hướng và định hình có thể xuất hiện trong tương lai:
Các mô hình ngôn ngữ lớn có thể tiếp tục phát triển với số lượng tham số tăng lên, mang lại khả năng hiểu biết và sáng tạo ngôn ngữ mạnh mẽ hơn.
Mô hình có thể trở nên ngày càng có khả năng thực hiện nhiều nhiệm vụ khác nhau mà không cần tinh chỉnh đặc biệt cho mỗi nhiệm vụ.
Các mô hình có thể được cải thiện để hiểu biết sâu sắc về ngữ cảnh và mối quan hệ giữa các yếu tố trong văn bản, điều này sẽ làm cho chúng trở nên ngày càng hữu ích trong nhiều ứng dụng thực tế.
Các mô hình có thể bắt đầu tích hợp kiến thức từ hình ảnh và ngôn ngữ, mở ra khả năng tương tác mạnh mẽ giữa hai loại dữ liệu này.
Tăng cường độc lập và minh bạch
Các nghiên cứu có thể tập trung vào việc làm cho mô hình trở nên độc lập hơn, giảm thiểu ảnh hưởng của dữ liệu đào tạo không mong muốn và tăng cường minh bạch về cách chúng hoạt động.
Các nghiên cứu và phát triển có thể đặc biệt chú trọng vào các khía cạnh đạo đức và an toàn của LLM, đảm bảo chúng không tạo ra nội dung có thể gây hậu quả tiêu cực.
Mô hình ngôn ngữ có thể trở nên có khả năng tùy chỉnh và cá nhân hóa để phản ánh nhu cầu và ngữ cảnh cụ thể của người sử dụng.
Các ứng dụng của LLM có thể được mở rộng từ văn bản đến nhiều lĩnh vực khác như y tế, giáo dục, tài chính, và nhiều lĩnh vực khác.
Tuy nhiên, cũng cần lưu ý rằng có những thách thức như vấn đề đạo đức, quản lý dữ liệu, và bảo mật thông tin mà cần phải giải quyết khi mô hình ngôn ngữ lớn tiếp tục phát triển và được triển khai rộng rãi.
Qua bài viết mô hình ngôn ngữ lớn (LLN) này, hi vọng chúng ta sẽ có thêm một số kiến thức cơ bản về các mô hình ngôn ngữ lớn (LLN).
P.A Việt Nam cung cấp đa dạng các Plan Hosting đáp ứng yêu cầu của khách hàng
Hosting Phổ Thông
Hosting Chất Lượng Cao
Email Server Pro
Tham khảo các ưu đãi: https://www.pavietnam.vn/vn/tin-khuyen-mai/